Clase de laboratorio 02: propiedades hidráulicas

Mecánica de Suelos y Geología Facultad de Ingeniería, Universidad de Buenos Aires

Índice

- Conductividad hidráulica y permeabilidad intrínseca
- Ensayos de laboratorio
 - Permeámetro en carga constante
 - Permeámetro en carga variable
 - Permeámetros de pared flexible
- Ensayo de bombeo in situ
- Flujo bidimensional
- Licuación
- Sifonaje
- Permeabilidad no saturada

Conductividad hidráulica (k) y permeabilidad intrínseca (K)

- Conductividad hidráulica (k)
 - unidades: m/seg
 - dependiente del fluido permeante
- Permeabilidad intrínseca (K)
 - unidades: m²
 - dependiente del medio poroso

Ambos conceptos se relacionan entre sí

$$\mathbf{K} = \frac{\mathbf{k}\mu}{\rho g} \rightarrow \mathbf{k} = \mathbf{K} \cdot \frac{\gamma}{\mu} \rightarrow \mathbf{k} = f(suelo, fluido)$$

Conductividad hidráulica (k): factores que afectan su valor

Naturaleza físico-química del fluido

- viscosidad μ
- densidad γ
- concentración iónica c_0
- valencia de la especie iónica z
- permitividad real k'
- temperatura T

$\uparrow \vartheta \rightarrow \downarrow k$

$$\mathcal{G} = \sqrt{\frac{\varepsilon_0 R}{2F^2} \frac{\kappa' T}{c_0 z^2}}$$

Espesor de doble capa difusa (DDL)

Propiedades del medio poroso

- porosidad o relación de vacíos $n = \frac{e}{1+e}$
- tortuosidad T
- superficie específica S_S

$$\uparrow$$
 T , \uparrow S_S , \downarrow $n \rightarrow \downarrow k$

Conductividad hidráulica (k): valores de referencia

Ej 1

¿Qué valor de *k* le asignamos a estos suelos?

Manual EPRI (Terzaghi & Peck, 1967)

$$k \sim C \cdot D_{10}^2 \left[\frac{m}{seg} \right]$$

A. Hazen (1911)

C=0.004-0.012

BS 8004:1986 Code of practice for Foundations (valores en m/seg)

Conductividad hidráulica (k): régimen de flujo

- Velocidades pequeñas, flujo laminar $R_e < 2100$
- Incompresibilidad del fluido
- Para flujo laminar es válida la ecuación de Bernoulli

$$h = z + \frac{p}{\gamma} + \frac{v^2}{2g}$$

$$v \rightarrow 0$$

$$h \sim z + \frac{u}{\gamma_w}$$

Permeámetro en carga constante

$$k = \frac{V \cdot L}{\Delta H \cdot A \cdot \Delta t}$$

- Ver video: <u>https://www.youtube.com/watch?v=Eur_qpTKzrA</u>
- ¿Dónde se miden las variables para calcular k ?
- ¿Es posible cualquier flujo ascendente?
- ¿Dónde ensayo un suelo SP y un GP?
- ¿Puedo ensayar un suelo CH en este permeámetro?

Permeámetro en carga variable $k = \frac{aL}{A\Delta t} \ln \left| \frac{h_1}{h_2} \right|$

$$k = \frac{aL}{A\Delta t} \ln \left[\frac{h_1}{h_2} \right]$$

Ver video:

https://www.youtube.com/watch?v=h yhVZd0Femw

- ¿Dónde se miden las variables para calcular k?
- ¿Puedo ensayar un suelo SP en este permeámetro?

Permeámetros de pared flexible: uso de equipo triaxial

- Más representativo de la muestra
- Mejor medición al contar con pared flexible (membrana)
- Se puede efectuar a carga constante o variable
- Dimensiones mínimas: 25mm x 25mm
- Apto para muestras con $k < 10^{-5} 10^{-6} m/seg$

Hydraulic Conductivity,	Recommended Maximum		
m/s	Hydraulic Gradient		
$1 imes 10^{-5}$ to $1 imes 10^{-6}$	2		
$1 imes 10^{-6}$ to $1 imes 10^{-7}$	5		
1×10^{-7} to 1×10^{-8}	10		
$1 imes 10^{-8}$ to $1 imes 10^{-9}$	20		
less than 1×10^{-9}	30		

Gradiente hidráulico recomendado (tiempos del ensayo)

Saturación de espécimen (B_{skempton} > 0.95)

Permeámetros de pared flexible: uso de equipo triaxial

$$k = \frac{a_{\text{in}} \cdot a_{\text{out}} \cdot L}{(a_{\text{in}} + a_{\text{out}}) \cdot A \cdot \Delta t} \ln \left(\frac{h_1}{h_2} \right)$$

Carga variable (método C)

$$k = \frac{\Delta Q \cdot L}{A \cdot h \cdot \Delta t} \qquad h = \Delta H_{\rm Hg} \cdot \left(\frac{\rho_{\rm Hg}}{\rho_{\rm w}} - 1\right) = \Delta H_{\rm Hg} \cdot (G_{\rm Hg} - 1)$$

Carga constante (método E)

Conductividad hidráulica primaria y secundaria

Conductividad primaria (k_{prim})

- Flujo de agua a través de los poros del suelo
- Crece con el tamaño de poro
- Decrece con la plasticidad

Conductividad secundaria (k_{sec})

- Flujo de agua a través de fisuras, macroporos y vetas arenosas
- No correlaciona con las propiedades físicas de los suelos

$$k_{prim} = 10^{-8} \frac{m}{seg}$$
; $k_{sec} = 10^{-5} - 10^{-6} \frac{m}{seg} \rightarrow Fm. Pampeano$

Ensayo de bombeo (medición de conductividad hidráulica en campo)

- Medición global (varios estratos de suelo)
- Mas representativo del trabajo real en obra

Estimación caudal en acuífero de penet. parcial, medio isótropo (J. Badillo, Tomo III, cap VII)

Punto de bombeo (B)

Puntos medición freática (P)

Ensayo de bombeo (medición de conductividad hidráulica en campo)

Un resultado

$$k = \frac{Q}{\pi (h_2^2 - h_1^2)} \ln(\frac{r_2}{r_1})$$

$$h = H - \frac{Q}{\pi kH} \cdot \frac{0.13 \ln\left(\frac{R}{r}\right) \ln\left(\frac{10R}{H}\right)}{1 - 0.8 \left(\frac{S}{H}\right)^{1.5}}$$

Curva de abatimiento medida en Fm. Pampeano (V. Urquiza, CABA)

	,		
Ensayo	Q	R	k
	m³/seg	m	m/s
Jaramillo y V. Obligado	4.6	35	2.36x10 ⁻⁵
La Pampa 2567	3.6	126	7.30x10 ⁻⁵
Triunvirato 5150	4.3	63	1.63x10 ⁻⁵

Fórmulas empleadas (Q: caudal erogado, r: distancia al punto de bombeo, h: energía piezomética en puntos de medición,R: radio hidráulico, s: distancia fondo de pozo-acuífero inferior, H: posición inicial freática)

Flujo bidimensional

- Ver video: https://www.youtube.com/watch?v=rM38JiyXDU8
- ¿ El flujo es confinado o no confinado ?
- ¿ $k_x = k_y$? ¿ Valores estimados de k para el cuerpo de presa y el material aguas arriba ?
- ¿ Cómo determinar Q ?
- ¿ La línea horizontal del fondo de la presa es una línea de corriente o línea equipotencial?

Licuación

¿ Por qué pasa esto?

Licuación

- El material se encuentra saturado y suelto.
- Se experimenta un <u>progreso de la deformación</u> por acción de una carga externa (martillo="sismo")
- La <u>velocidad de aplicación de la carga</u> no permite que el agua escape.
- El material resiste en una condición de drenaje impedido, aumentan las presiones neutras Δu.
- <u>Las presiones efectivas σ' se reducen</u> lo suficiente y la estructura granular falla (licuación = se hunde la casa).

Sifonaje

- Ver video: https://www.youtube.com/watch?v=G9QKPEe-hgE
- ¿Sifona si se cambia el sentido de circulación de flujo?

$$\sigma'_{v} = \gamma_{sat} \cdot L - \gamma_{w} \cdot (h + L)$$

$$\sigma'_{v} = \gamma' \cdot L - \gamma_{w} \cdot h$$

$$h = h_{crit} \to \sigma'_{v} = 0 \text{kPa}$$

$$h_{crit} = \frac{\gamma_{sat} - \gamma_{w}}{\gamma_{w}} L \to i_{crit} = \frac{\gamma'}{\gamma_{w}}$$

Piedra porosa

Conductividad hidráulica no saturada (k_w)

- En suelos saturados:
 - El flujo a través del suelo está gobernado por la Ley de Darcy
 $v_w = -k_w \frac{\partial h_w}{\partial v}$
 - Suelo homogéneo e isótropo $k_w = cte$
- En suelos parcialmente saturados:
 - También es aplicable Darcy

- El aire también es un fluido $k_a \neq cte$
- Las conductividades k_w y k_a varían con el grado de saturación ($S_r \to 1 \; k_w \gg k_a$, $S_r \to 0 \; k_w \ll k_a$)

Conductividad hidráulica no saturada (ensayo de columna infiltración)

Conductividad hidráulica no saturada (ensayo de columna infiltración)

$$\theta = \frac{S_r e}{1 + e}$$

$$V_w = \int_i^j \theta(x) A dx$$

$$v_{w} = \frac{dV_{w}}{Adt}$$

$$k_w = \frac{v_w}{i_w}$$

Bibliografía

- Normas ASTM American Society of Testing Materials
 - D 2434 (permeabilidad, carga constante)
 - D 5084 (permeabilidad, pared flexible)
- Jean-Pierre Bardet Experimental Soil Mechanics
- Germaine Geotechnical Laboratory Measuerements for Engineers
- Brusa F., Morandi R., Sterin U. "Comportamiento no saturado de la Formación Pampeano". Tesis de grado UBA, 2014.