Clase de laboratorio 02: propiedades hidráulicas

Mecánica de Suelos y Geología Facultad de Ingeniería, Universidad de Buenos Aires

- Conductividad hidráulica y permeabilidad intrínseca
- Ensayos de laboratorio
 - Permeámetro en carga constante
 - Permeámetro en carga variable
 - Permeámetros de pared flexible
- Ensayo de bombeo in situ
- Flujo bidimensional
- Licuación
- Sifonaje
- Permeabilidad no saturada

Conductividad hidráulica (k) y permeabilidad intrínseca (K)

Conductividad hidráulica (k)

- unidades: m/seg
- dependiente del fluido permeante

• Permeabilidad intrínseca (K)

- unidades: m²
- dependiente del medio poroso

Ambos conceptos se relacionan entre sí

$$\mathbf{K} = \frac{\mathbf{k}\mu}{\rho g} \to \mathbf{k} = \mathbf{K} \cdot \frac{\gamma}{\mu} \to \mathbf{k} = f(\text{suelo, fluido})$$

Conductividad hidráulica (*k*): factores que afectan su valor

- Naturaleza físico-química del fluido
 - viscosidad μ
 - densidad γ
 - concentración iónica c_0
 - valencia de la especie iónica z
 - permitividad real k'
 - temperatura T
- Propiedades del medio poroso
 - porosidad o relación de vacíos $n = \frac{e}{1+e}$
 - tortuosidad T
 - superficie específica S_S

 $\uparrow \vartheta \to \downarrow k$ $\vartheta = \sqrt{\frac{\varepsilon_0 R}{2F^2}} \frac{\kappa' T}{c_0 z^2}$

Espesor de doble capa difusa (DDL)

 \uparrow T, \uparrow S_S, \downarrow $n \rightarrow \downarrow k$

Conductividad hidráulica (*k*): valores de referencia

¿Qué valor de *k* le asignamos a estos suelos?

1 10-1	10 ⁻² 10 ⁻³ 10	-4 10 ⁻⁵ 10 ⁻⁶	10 ⁻⁷ 10 ⁻⁸ 10 ⁻⁹ 10 ⁻¹⁰	
Clean gravels	Clean sands and sand-gravel mixtures	Very fine sands, silts and clay-silt laminate	Unfissured clays and clay-silts (>20% clay)	
	Desiccated and fissured clays			

 $k \sim C \cdot D_{10}^2 \left[\frac{m}{seg} \right]$

A. Hazen (1911) C=0.004 - 0.012

BS 8004:1986 Code of practice for Foundations (valores en m/seg)

5

- Velocidades pequeñas, flujo laminar $R_e < 2100$
 - Incompresibilidad del fluido
 - Para flujo laminar es válida la ecuación de Bernoulli

Zonas de flujo laminar y turbulento (Taylor, 1948)

Permeámet

Pre

- Ver video: https://www.youtu
- ¿Dónde se m calcular k ?
- ¿Es posible cualquier flujo ascendente?
- ¿Dónde ensayo un suelo SP y un GP?
- ¿Puedo ensayar un suelo CH en este permeámetro?

Permeámetr

- Ver video: <u>https://www.youtut</u> <u>yhVZd0Femw</u>
- ¿Dónde se miden las variables para calcular *k* ?
- ¿Puedo ensayar un suelo SP en este permeámetro ?

$$k = \frac{aL}{A\Delta t} \ln\left[\frac{h_1}{h_2}\right]$$

Permeámetros de pared flexible: uso de equipo triaxial

- Más representativo de la muestra
- Mejor medición al contar con pared flexible (membrana)
- Se puede efectuar a carga constante o variable
- Dimensiones mínimas: 25mm x 25mm
- Apto para muestras con $k < 10^{-5} 10^{-6}m/seg$

Recommended Maximum

Hvdraulic Gradient

5 10

20

00

	30				
Gradiente hidráulico recomendado					
(tiempos del ensayo)					

Hydraulic Conductivity,

 1×10^{-5} to 1×10^{-6} 1×10^{-6} to 1×10^{-7}

Saturación de espécimen $(B_{skempton} > 0.95)$

Permeámetros de pared flexible: uso de equipo triaxial

Lab 02 - propiedades hidráulicas

$$k = \frac{\Delta Q \cdot L}{A \cdot h \cdot \Delta t} \qquad h = \Delta H_{\rm Hg} \cdot \left(\frac{\rho_{\rm Hg}}{\rho_{\rm w}} - 1\right) = \Delta H_{\rm Hg} \cdot (G_{\rm Hg} - 1)$$

Carga constante (método E)

ASTM D5084

Conductividad hidráulica primaria y secundaria

Conductividad primaria (k_{prim})

- Flujo de agua a través de los poros del suelo
- Crece con el tamaño de poro
- Decrece con la plasticidad

Conductividad secundaria (k_{sec})

- Flujo de agua a través de fisuras, macroporos y vetas arenosas
- No correlaciona con las propiedades físicas de los suelos

$$k_{prim} = 10^{-8} \frac{m}{seg}$$
; $k_{sec} = 10^{-5} - 10^{-6} \frac{m}{seg} \rightarrow Fm.$ Pampeano

11

Ensayo de bombeo (medición de conductividad hidráulica en campo)

- Medición global (varios estratos de suelo)
- Mas representativo del trabajo real en obra

Estimación caudal en acuífero de penet. parcial, medio isótropo (J. Badillo, Tomo III, cap VII)

Q=cte

 $\boxtimes_{B} \xrightarrow{x1(m)} \bigoplus_{P1} \xrightarrow{x2(m)} \bigoplus_{P2} \xrightarrow{x3(m)}$ B:ubicación bomba P1,P2 y P3:ubicación piezómetros

PAMP, INFERIÓF

Puntos medición freática (P)

Ensayo de bombeo (medición de conductividad hidráulica en campo)

• Un resultado

 $k = \frac{Q}{\pi (h_2^2 - h_1^2)} \ln(\frac{r_2}{r_1})$

$$h = H - \frac{Q}{\pi k H} \cdot \frac{0.13 \ln\left(\frac{R}{r}\right) \ln\left(\frac{10R}{H}\right)}{1 - 0.8 \left(\frac{s}{H}\right)^{1.5}}$$

Fórmulas empleadas (Q: caudal erogado, r: distancia al punto de bombeo, h: energía piezomética en puntos de medición,R: radio hidráulico, s: distancia fondo de pozo-acuífero inferior, H: posición inicial freática)

Curva de abatimiento medida en Fm. Pampeano (V. Urquiza, CABA)

Ensayo	Q	R	k
	m³/seg	m	m/s
Jaramillo y V. Obligado	4.6	35	2.36x10⁻⁵
La Pampa 2567	3.6	126	7.30x10⁻⁵
Triunvirato 5150	4.3	63	1.63x10⁻⁵

Valores medidos (Sfriso & Codevilla, 2011)

Flujo bidimensional

- Ver video: https://www.youtube.com/watch?v=rM38JiyXDU8
- ¿ El flujo es confinado o no confinado ?
- ¿ k_x = k_y ? ¿ Valores estimados de k para el cuerpo de presa y el material aguas arriba ?
- ¿ Cómo determinar Q ?
- ¿ La línea horizontal del fondo de la presa es una línea de corriente o línea equipotencial?

Licuación

¿ Por qué pasa esto?

Licuación

- El material se encuentra saturado y suelto.
- Se experimenta un progreso de la deformación por acción de una carga externa (martillo="sismo")
- La <u>velocidad de aplicación de la carga</u> no permite que el agua escape.
- El material resiste en una condición de drenaje impedido, aumentan las presiones neutras Δu .
- <u>Las presiones efectivas σ' se reducen</u> lo suficiente y la estructura granular falla (licuación = se hunde la casa).

Sifonaje

- Ver video: https://www.youtube.com/watch?v=G9QKPEe-hgE
- ¿Sifona si se cambia el sentido de circulación de flujo?

 $(L \mid I)$

$$\sigma_{v} = \gamma_{sat} \cdot L - \gamma_{w} \cdot (n + L)$$

$$\sigma_{v}' = \gamma' \cdot L - \gamma_{w} \cdot h$$

$$h = h_{crit} \rightarrow \sigma_{v}' = 0 \text{kPa}$$

$$h_{crit} = \frac{\gamma_{sat} - \gamma_{w}}{\gamma_{w}} L \rightarrow i_{crit} = \frac{\gamma'}{\gamma_{w}}$$

T

Conductividad hidráulica no saturada (k_w)

- En suelos saturados:
 - El flujo a través del suelo está gobernado por la Ley de Darcy $v_w = -k_w \frac{\partial h_w}{\partial v}$
 - Suelo homogéneo e isótropo
- En suelos parcialmente saturados:
 - También es aplicable Darcy
 - Suelo homogéneo e isótropos $k_{W} \stackrel{ii f}{=} f^{i} \left(\theta \stackrel{ti}{=} \frac{V_{\omega}}{V} \right) \neq cte$
 - El aire también es un fluido $k_a \neq cte$
 - Las conductividades k_w y k_a varían con el grado de saturación ($S_r \rightarrow 1 \ k_w \gg k_a$, $S_r \rightarrow 0 \ k_w \ll k_a$)

 $k_w = cte$

Conductividad hidráulica no saturada (ensayo de columna infiltración)

Conductividad hidráulica no saturada (ensayo de columna infiltración)

 v_w

 k_w

Brusa et. al. (FIUBA, 2014)

Bibliografía

- Normas ASTM American Society of Testing Materials
 - D 2434 (permeabilidad, carga constante)
 - D 5084 (permeabilidad, pared flexible)
- Jean-Pierre Bardet Experimental Soil Mechanics
- Germaine Geotechnical Laboratory Measuerements for Engineers
- Brusa F., Morandi R., Sterin U. "Comportamiento no saturado de la Formación Pampeano". Tesis de grado UBA, 2014.

