Suelos de la Ciudad de Buenos Aires y alrededores

Mecánica de Suelos y Geología Facultad de Ingeniería, Universidad de Buenos Aires

- Aspectos hidrogeológicos
- Perfil geotécnico
 - Formación Pampeano
 - Formación Postpampeano
 - Formación Puelchense

Aspectos hidrogeológicos: mapa CABA

3

Aspectos hidrogeológicos: cuencas hídricas CABA

Aspectos hidrogeológicos: unidades CABA

Formación	Espesor m	Edad años	Litología	Comportamiento Hidrogeológico				
Postpampeano (Luján + Querandí)	0 a 33	Holocena 10.10 ³ a 6.10 ³	Arcilla, arena muy fina y arena arcillosa, gris oscura y verdosa. Marino y fluvial.	Acuícludo – acuitardo, hasta acuífero de muy baja productividad (< 1 m3/h/pozo). Unicamente en la Terraza Baja. Agua clorurada sódica de alta salinidad (27 g/l).				
Pampeano (Ensenada + Buenos Aires)	0 a 45	Pleistocena 2.10 ⁶ a 50.10 ³	Limo arenoso y arcilloso, calcáreo (loess), castaño claro. Eólico y fluvial.	Acuífero libre a semiconfinado de media a baja productividad (5-30 m3/h/pozo). Agua bicarbonatada cálcica de baja salinidad (< 1 g/l); en la Terraza Baja aumenta la salinidad.				
Arenas Puelches	20 a 30	Pliocena sup. a Pleistocena inf. 5.10 ⁶ a 2.10 ⁶	Arena cuarzosa fina y mediana, amarillenta a blanquecina. Deltaico.	Acuífero semiconfinado de alta productividad (30 a 160 m3/h/pozo). Agua bicarbonatada sódica de baja salinidad (< 1 g/l); en la Terraza Baja aumenta hasta 45 g/l.				
Paraná	62	Miocena inf. a sup. 20.10 ⁶ a 10.10 ⁶	Arcilla plástica verde oscura – azulada y arena blanquecina, fosilíferas. Marino.	Acuícludo en la sección arcillosa y acuífero de alta productividad en la arenosa. Agua clorurada sódica de media a alta salinidad (3 a 20 g/l).				
Olivos	289	Miocena inf. a Oligocena 30.10 ⁶ a 20.10 ⁶	Arcilla rojiza, arenisca y arenisca arcillosa, yesíferas y calcáreas. Eólico, lagunar y fluvial.	Acuícludo en la sección arcillosa y acuífero en la arenosa. Agua sulfatada sódica de alta salinidad (10 a 60 g/l).				
Martín García (Basamento Cristalino)		Precámbrica 2.100.10 ⁶	Aplita y gneis grisáceo muy esquistoso, con vetas aplíticas. Metamórfico.	Basamento hidrogeológico (acuífugo).				

SUELO

~**300***m*

ROCA

(Auge M., 2004)

(dibujo fuera de escala)

Perfil geotécnico: Puerto Madero (típico) y otros

S
d)
<u> </u>
<
S
0
ž
5
Φ
$\overline{\mathbf{\omega}}$
ш
A >
Ψ
σ
S
0
<u> </u>
Ð
Ť
3
0)

PROF	DESCRIPCION	uses	En	sayo 15	pen-	etta	ción 7 Res			N-	SP	T		0,,	, u	. 1	PI	р	L	. Atte	rberg	Ta	mices #20	0	,	PROF	Į	DESCRIPCION	uses	Er	15ayo	pene 30	tració Carr	in Bec		N	- SP	Т		and a	ш	LP	IP	Г	LA	dert	erg	Ta #40	mices	7	Ī
m	LIT L		15	30	45	C.	1 5		0	10.2	0.30	10 50	80	-	. 3	-	4	5	0+	20 4	0 60 60	1	5	1.5	im	m	1	DESCRIPTION CITIEN		15	30	45	cm	4		0 10	20 30 4	10 50 6	•		5	8	5		0.2	0 40	60 80	5	5	kSim	ń
0.5	N. I. N.			_														T.								31.0	¢		\$P	60			10		31.5	IT	tt	11	50					01	Π	IT	Π		2	1	_
1.0	elleno artificial								T	Π	Т	Π	1													32.0	0		SP	50			10	70	32	H	H	۲	2	95				32	Ħ	H	Ħ	84	3		_
2.0	10 R05 11834								1T			Π	1						1							33.0	0		SP	50			10		33 -	H	H	1	50					35	H	H	Ħ		1		
3.0 c	castaño mediano		6	5	4	45			3-4	ľ	T	Ħ	1						1							34.0	ò		5P	60			10	60	34	+		4	60 1	5.7				34	H	H	H	85	1		
4.0		ML	6	6	6	45	78		*	t	•	Ħ	1	35.8	3	8 3	13	5	1				>9			35.0	0		SP	50			8		35		$\boldsymbol{\prime}$	+	50					36	Н	H	Н	Γ	2		
5.0	iódulos calcáreos, con	ML	5	6	5	45	00		-	t		H		42.5	3	1	0	3	5	1			>9			36.0	0		sp	50			7	86	35	Ι	-	-	60 1	5.8				35	H	+	Н	64	3	\square	l
6.0	ródulos verdosos	ML	8	6	8	45		1	8-	Ħ	"	H		40.3	1 31	1	0	9	-	*	+		>9	18	12	37.0	ò		SP	50			9						60					37	Н	+	Н	-	2		Î
7.0		SM	1	7	6	45	47		7-	H		H			T	T	T	П	7	-	+		22	T		38.0	0		SP	50			12	87	38	4	4		60 1	6.2				ы	H		Н	84	2	1	1
8.0	pris oscuro uniforme con mica,	SM	7	8	8	45	41		+	k	13	H	1		t	t	T	H	1	-	+	98	25	t		39.0	0		sp	50			12		39	11	4	Ц.	80	7				31	H	4	4	F	2	-	1
9.0	desestructurado	SM	12	16	20	45	44		+	-	4		-		t	t		H	2	-	-		29	1		40.0	0		SP	50			9	78	40	1	Ц.		60 1	5.4				40	4		Ц	86	1	-	
10.0	and the section care	ML	14	18	25	45	80	,	10-	H	÷	*	-	39.2	2 3	1	4	5	10	- 1	-	F	>9			41.0	١.	marillento ambar	50	50		/	9			4			60					41	1		Ц	-	1	+	1
11.0	etas calcáreas,	ML	13	17	23	45	80		(i -	Ц	+	32	-	35.4	1 31		4	5		-		F	>9	12	18	42.0	0	la Mallaria	59	50			10	80	42				50 1	6.4			H	0	Ц		Ц	83	2	t	ï
12.0	cementado	M	20	20	25	45	87	,	2	Ц	1		-	27 6	1 3		7 9		12 -	-4	-	F	24		-	430	0		9	1		-	8		45	Ш			50	-		-		43	Ц			-	2	+	Ĩ
13.0		0	10	22	27	4	05			Ц		4		10.1	1 2		10			Ų		F	1.00	-	-	41			-	50		-	7	85					60 1	5.4		-	H					-	1	+	
14.0	ant after mine can			- 24	21	1	21	Ξ,	4		1			97.5	1 21			Н		1		10		+	-	15/	Ĩ		6	50		-	40	00						-		-							1	+	
10.00	mpregnación calcárea,		20	49	22	-		Ξ.						00.0		+	+	н				-	-0			40.4	ž		50	50		-		77								-		Ľ				-	+	+	
10.00	sesestructurado	ML.		12	40	1	1	1						20.1			-	H		1		F	12	+	-	+0.5	1		38	50		-	-12	"	*2	Π	Π			2.2		-		1	Π		П	-	+	+	
19.0		CL ML	20	22	22	4		-				ľ		1.3.1						1		\vdash	28	-	-	41.5	-		38	59		-	N	-	"	Π	Π		80			_			Π		Π	-	1	+-	
17.0		CL ML	13	20	30	43	13		T	Π	1		1	22.	20	5 2	2	0	. [I		Ŀ	>9	-	-	48.0	0		589	50		-	.9	78	41	IT	T	Т	60	3.4					Π		Π	54	3	+-	
18.0		CL-ML	10	54	25	45	67	-			T	1	1	23.4	28	2	2	6	"	T		100	96	-	-	49.0	9		SP	50		-	5	_	49	Ħ	Ħ	Т	50		_			49	T	T	Ħ		2	+-	
19.0	828 19	CL ML	м	20	20	45	84	1	"	Ħ	t	27	1	22 :	21	1 2	2	6	"1	Ť		L	>9	-	4	50.0	1		59	50		_	8	-63	50	Ħ	Ħ	۲	60	2.9				-60	Ħ	Ħ	Ħ	85	2	4	
20.0 0	astaño mediano con etitas negras, con	CL-ML	13	17	24	45	84	1	10 -	Ħ	١	33	1	23.8	3 21	8 2	2	6	20	t			>9	2			0		SP	50			12		61 -	Ħ		7	60					42	Ħ	H	Ħ	_	3	-	
21.0	roduitos calcáreos	CL-ML	19	26	23	45	00	1	1	Ħ	ť	t	۲.	24.4	1 21	2	2	6	21	t			>9	20	13	.52.0	0		MH	13	13	20	45	76	12	H	1			24	56	33	23	62	H	1	1	100) 移	1	
22.0		CL ML	17	30	20	45	78	1	12 +	H		+	۴	23 (21	3 2	2	6	22 -	*			>9		4	53.0	0	10 D	CH	16	14	24	45	84	53	H	H	10	4	3.3	65	31	34	43	H	th	t	L	>90	17.7	1
23.0			20	20	27	45		1	13	Η	t	1	1					L)	23 -	-	-	L				54.0	0	risaceo verdoso con etitas calcáreas	CH	15	20	20	45	80	54	++	H	12	5	5.7	65	31	34	н	H	ŧ.	*	L	>90	16.7	ľ
24.0		CL	25	25	25	41	71	1	14	Η		+	•	22.1	3	5 2	14 1	11	24	- 11			-9	5		55.0	0		CH	13	19	26	45	73	65	++			4	3.1	65	31	34	55	Н	ŧť	₩		>90	(
25.0	castaño claro con ródulos calcáreos	CI.	12	14	17	45	73	2	15 -	H	4	4	-	22.8	3 33	2 1	18 1	14	25	#	-	1	>9			56.0	0		CH	14	24	22	45	67	66	#		37	4	3.1	65	31	34	50	H	ų.	₩		>90	17.8	8
26.0	castaño mediano uniforme	CL.	20	50		30	67	2	8-	-	+		-	28.7	2 30	1	9 1	1	25	1			>9	2		57.0	0		MH	16	20	27	45	62	87	4	Ц,	*	4	4.4	75	35	40	67	+		4		>90		Ĩ
27.0	2012	SP-SM	25	50		32	41	1	17	1	+	4	-		F	T			27		4	85	7	T		58.0	٥,	risiiceo oscura	MH	13	18	24	45	62	53	1	H	33	1	6.4	75	35	40	54	4	1	44	Γ	>90	16.7	ï
28.0		SP-SM	50			11	73	1				4	-		t	t			28	/	Ш		6	T		59.0		zulado		15	21	26	45		64	1		-						10			1			1	Ì
29.0	amarillento ambar	SP	50		-	12	67	Ι,					-		t	t			1				5	t		60.0	0		MH	14	22	26	45	89	60				4	3.1	73	37	36	80	1	-	-		>90	17.1	i
30.0		SP	50	-	-	1	50								t	t		X				85	3	+			6	in del ensayo	-	-								Ĩ		-			-						-	-	Ì

Planilla típica campo + laboratorio

Perfil geotécnico: Puerto Madero está en el cauce del Río de la Plata (terreno ganado al Río)

Perfil geotécnico: La geotecnia de Puerto Madero en escala

- ¿Qué problemáticas geotécnicas observa?
- ¿Siempre recomendaría fundación profunda?
- ¿Qué cambia si las obras estuviesen en el Pampeano (centro Bs As) ?

PAMPEANO

60m

10

20

40

Perfil geotécnico: Forma (origen)

- Transportado por acción eól y basaltos de Cordillera centra
- Depositado como Loess en el Patagonia
- Redepositado en ambientes fluvial y lacustre en la zona central del país Loess modificado
- Fuertemente cementado
 en algunos espesores

ano

Perfil geotécnico: Formación Pampeano (secuencia de deposición)

- Zonas de deposición
 - Eólica: Pamp. superior y medio
 - Fluvial: Pamp. inferior
- Preconsolidados por desecación
 - OCR>1
- Precipitación
 - Óxidos de calcio (tosca)
 - Carbonatos (nódulos)
- Mineralogía
 - Plagioclasas, cuarzo,
 vidrio volcánico, Caolinita e ilita

Zona I, Eólica

Zona II, Fluvial

Perfil geotécnico: Formación Pampeano (propiedades físicas)

Zona	Prof	Cota	e_0	ω	LL	LP	IP	$\gamma_{\rm s}$	γ
	m	m	-	%				kN/m³	kN/m ³
Ia	10.16	15.00	0.848	32.0	67.0	30.0	37.0	25.98	18.53
Ia	12.16	13.00	0.888	33.5	67.0	31.5	35.5	25.98	18.33
Ib	20.00	5.16	0.826	31.4	41.3	27.8	13.5	25.78	18.53
Ib	27.20	-2.04	0.848	32.0	51.0	30.0	21.0	25.98	18.53
Ic	32.70	-7.54	1.180	44.5	69.0	33.5	35.5	25.98	17.25
II	39.05	-13.89	0.860	32.5	88.0	27.0	61.0	26.47	18.63

39.05 -13.89 0.860 32.5 88.0 27.0 61.0 26.47 18.63 49.70 -24.54 0.888 33.5 48.5 22.0 26.5 25.98 18.33	12.16 13.00 0.888 20.00 5.16 0.826 27.20 -2.04 0.848 32.70 -7.54 1.180	33.5 67.0 31.5 35.5 31.4 41.3 27.8 13.5 32.0 51.0 30.0 21.0 44.5 69.0 33.5 35.5	25.98 25.78 25.98 25.98	18.33 18.53 18.53 17.25
53.75 -28.59 1.000 37.0 64.5 24.5 40.0 26.47 18.09	49.70 -24.54 0.888 53.75 -28.59 1.000	33.5 48.5 22.0 26.5 37.0 64.5 24.5 40.0	25.98 26.47	18.33 18.09

Π

Π

Perfil geotécnico: Formación Pampeano (propiedades mecánicas)

Suelo muy rígido, preconsolidado por desecación, fisurado y erráticamente cementado con CaCO₃

Características principales

- La cementación produce una cohesión confiable
- Las fisuras inducen alta conductividad hidráulica: tendencia de comportamiento "drenado"
- Comportamiento de tipo "roca blanda" en horizontes fuertemente cementados

Transición Pampeano medio a inferior

Castaño, oxidado, fisurado, fuertemente cementado, no erosionable

Requiere

contención lateral

Verdoso, no oxidado, no fisurado, ligeramente cementado, erosionable

Perfil geotécnico: Fm Pampeano - módulo de Young (E_{ur}) en laboratorio

(Sagues 2007)

(Sfriso et al 2008)

Perfil geotécnico: Fm Pampeano - módulo de Young in situ (PLT)

H

Perfil geotécnico: Fm Pampeano – parámetros medios p/ modelos numéricos

Parámetros usados para la modelización de túneles y obras subterráneas en Buenos Aires

kPa	50,100			
	30-100	110-220	40-120	
kPa	10-25	25-50	15-30	
0	30-32	30-34	29-32	
0	0-3	0-6	0-3	
MPa	120-200	150-250	90-140	
MPa	60-100	70-150	60-90	
MPa	150-250	180-300	140-220	
	0.0-0.4	0.0-0.4	0.0-0.4	
-	0.20-0.30	0.20-0.30	0.20-0.30	
-	0.80-0.90	0.80-0.90	0.80-0.90	Modelación numérica de excavación en
	MPa MPa MPa -	 30-32 0-3 MPa 120-200 MPa 60-100 MPa 150-250 0.0-0.4 0.20-0.30 0.80-0.90 	 30-32 30-32 30-34 0-3 0-6 MPa 120-200 150-250 MPa 60-100 70-150 MPa 150-250 180-300 0.0-0.4 0.0-0.4 0.20-0.30 0.20-0.30 0.80-0.90 0.80-0.90 	NPa 10-20 20-00 10-00 ° 30-32 30-34 29-32 ° 0-3 0-6 0-3 MPa 120-200 150-250 90-140 MPa 60-100 70-150 60-90 MPa 150-250 180-300 140-220 - 0.0-0.4 0.0-0.4 0.0-0.4 - 0.20-0.30 0.20-0.30 0.20-0.30 - 0.80-0.90 0.80-0.90 0.80-0.90

Perfil geotécnico: Fm Pampeano – excavaciones a cielo abierto

Diagrama de empujes reglamentario

- El Pampeano es un depósito fisurado
- <u>Siempre</u> hay que colocar un sostenimiento en todas las excavaciones
- El Diagrama de Empujes del Código es suficiente para excavaciones comunes hasta 8 - 10m de profundidad
- ¿Por qué dice γ_w en el diagrama?

Buenos Aires

de

Suelos (

Perfil geotécnico: Fm Pampeano – excav.

 La altura critica de una excavación sin sostenimiento y sin cargas en superficie es:

$$H_{critica} = \frac{4}{1} \frac{c}{\gamma} \tan\left(45^{\circ} + \frac{\phi}{2}\right)$$

 La altura máxima de una excavación sin sostenimiento, sin cargas en superficie y fisurado es:

$$H_{max} = \frac{8}{3} \frac{c}{\gamma} \tan\left(45^{\underline{o}} + \frac{\phi}{2}\right)$$

• En el Pampeano (<u>esto es teórico, coloque sostenimiento</u> <u>mínimo</u>) $H_{max} = \frac{8}{3} \frac{(30|50) \text{kPa}}{(19|20) \text{kN/m}^3} \tan\left(45^{\circ} + \frac{30^{\circ}|34^{\circ}}{2}\right) \sim 7m \mid 13m$

Perfil geotécnico: Fm Pampeano – excavación Teatro La Plata (1970)

Perfil geotécnico: Fm Pampeano – excavación Teatro La Plata (1970)

Perfil geotécnico: Fm Pampeano – excavación Teatro La Plata (1970)

Muy alta capacidad de carga de pilotes

- Pilote cuadrado
 B = 40 cm, L = 12 m
- Capacidad de carga por la punta similar a capacidad de carga por el fuste
- $Q_{ult} = 3100kN \sim 310ton$
- $\sigma_{v_{ult}} = \frac{Q_{ult}}{\acute{A}rea} = 19.4 MPa$

Muy alta capacidad de carga de pilotes

- Pilote cuadrado
 B = 30 cm, L = 12 m
- Hincado con un martillo D12
- $Q_{ult} = 1440kN$
- $\sigma_v = 16.0 MPa$

Muy alta capacidad de carga de pilotes

- Pilote cuadrado
 B = 45 cm, L = 12 m
- Preperforación ~8 m
- Relleno con hormigón (1.45 vol. huelgo)
- Hincado con un martillo K25 (S₁₀ < 2cm)
- $Q_{ult} = 3400kN$
- $\sigma_v = 16.7 MPa$

Submuración de torres de Catedral de La Plata con micropilotes

Primera fundación platea-pilotes

Excavación de Estación Corrientes

Perfil geotécnico: Post-pampeano

Origen y composición:

- Depósitos recientes de arenas limosas, limos y arcillas de origen fluvial y marítimo, normalmente consolidados y poco estructurados, con espesores de cinco a veinticinco metros, que se encuentran en la ribera del Paraná inferior, Río de la Plata y afluentes
- La edad de la formación va desde el presente hasta unos 10.000 años

Perfil geotécnico: Post-pampeano

Origen y composición:

- Limos y arenas limosas sub-angulares de origen fluvial (ML, SM)
- Arcillas de origen fluvial y marino (CH)

Perfil geotécnico: Post-pampeano (prop. físicas y mecánicas)

(Rinaldi

2006)

Formación	Parámetro	Descripción		Referencia				
	USCS	CL , ML, SM	(1)					
	IP (%)	10 - 20 IP = 0,72 (w _L - 14,7)	(1)					
	LL (%)	20 - 40	(1)	⁽¹⁾ Estudios				
Playa Honda	w _n (%)	20-50 (generalmente w _n > LL)	(1)	Geotécnicos de				
(Horizonte de	γ_{d} (kN/m ³)	11.5 - 14.5	(1)	Tabla 1.				
formación Fluvial)	γ_{s} (kN/m ³)	17 - 20	(1)	$\int_{(3)}^{(2)} \text{Sfriso} (1997)$				
	k (cm/s)	$10^{-5} - 10^{-6}$	(2)	⁽³⁾ Rinaldi y				
Limocy	N (SPT)	N < 10	(1)	Zeballos				
LITIOS y	s _u (kPa)	20 - 40	(1)	(1990).				
arenas	φ´ (°)	25 - 30	(2)	(2006)				
	E _u (kPa)	~ 2000	(2)	(2000).				
limosas	C _c	0,20-0,30	(2)					
	V _s (m/s)	$150 - 200$ $V_s = 40 (\sigma_o')^{0.35}$	(3)					
	റ (Ohm-m)	12 - 20	(4)					
	USCS	СН	(1)					
	IP (%)	50 - 70 IP = 0,72 (w _L -14,7)	(1)	⁽¹⁾ Estudios				
	LL (%)	60 - 110	(1)	Geotécnicos de				
Atalaya	W _n (%)	80 - 90	(1)	Tabla 1.				
(Horizonte de	γ_{d} (kN/m ³)	7 - 10	(1)	$^{(2)}$ Sfriso (1997),				
formación Marina)	$\gamma_{\rm s}$ (kN/m ³)	14 - 16	(1)	⁽³⁾ Leoni				
	k (cm/s)	$10^{-6} - 10^{-8}$	(1)(2)	(2002),.				
	N (SPT)	N < 5	(1)	⁽⁴⁾ Rinaldi y				
Arcillas	s _u (kPa)	$10 - 35$ $s_u = 1,82 z + 3,91$	(3)					
	φ´ (°)	20	(2)	(1996).				
plásticas	E _u (kPa)	$1500 - 3000^{(1)}$ Eu = 490 C _u	(3)	(2006)				
	C _c	$0.45 \ 1,10 C_c = 0,009 \ (w_L - 10)$	(1) (3)	(2000).				
		$C_c = 0,38 e_o - 0,15)$	(3)					
	V _s (m/s)	$100 - 150 \text{ V}_{\text{s}} = 24 (\sigma_{\text{o}})^{0,40}; \sigma_{\text{o}} \text{ (kPa)}$	(4)					
	ρ (Ohm-m)	1.2 – 3	(5)					

33

Perfil geotécnico: Post-pampeano (prop. mecánicas)

Correlación rigidez edométrica (C_c) – LL

Perfil geotécnico: Post-pampeano (prop. mecánicas)

Correlación resistencia al corte no drenada (s_u) - rigidez inicial (E_i)

Perfil geotécnico: Post-pampeano (prop. mecánicas)

Buenos Aires liquidez (*IL*) de Suelos

 $^{0 &}lt; I_1 < 1 \rightarrow$ Soil is in plastic state $I_1 < 0 \rightarrow$ Soil is in semi-plastic or solid state $I_1 > 1 \rightarrow$ Soil is in *liquid state* (quick clays or ultra sensitive clays)

36

Perfil geotécnico: Post-pampeano (prop. mecánicas, CIUC en SM remoldeadas)

Perfil geotécnico: Post-pampeano (compresibilidad)

 Asentamiento de tanques en (Esso Campana)

Depósitos continuos de arenas finas cuarzosas con escasas intercalaciones arcillosas, espesor de 20m a 35m

- SP y SP-SM
- Estrato muy denso, $(N_1)_{60} > 40$
- φ (fricción de pilotes) ~ 40° 45°
 - ϕ (punta de pilotes) ~ 33° 36°

Ensayo TX de arena del Puelchense

Bibliografía

- Bolognesi A., Moretto O. 1957. Properties and behaviour of silty soil originated from Loess formation. 4th ICSMFE Vol. 1, p. 9.
- Bolognesi A, Moretto O. 1961. Propiedades del subsuelo del Gran Buenos Aires. 1 PCSMFE. Vol 1, p.303-310.
- Bolognesi, A. 1975. Compresibilidad de los suelos de la Formación Pampeano. V PCSMFE, Buenos Aires, V: 255-302.
- Bolognesi, A. y Vardé, O. 1991. Subterráneos en Buenos Aires. IX PCSMFE, Viña del Mar, Chile, III:1329-1350.
- Codevilla, M. y Sfriso, A. 2010. Ensayos de carga en placa en suelos de la Ciudad de Buenos Aires. XX CAMSIG 2010. CD-ROM. Mendoza.
- Fidalgo, F., De Francesco, F. y Pascual, R. 1975. Geología superficial de la llanura Bonaerense. VI Cong Geol Arg, Bahía Blanca.
- Moretto, O. 1972. Earth pressures on rigid walls for soils preconsolidated by dessication in the City of Buenos Aires. V ECSMFE. Vol 2, p.1-10. Madrid.

Bibliografía

- Núñez, E. 1986. Panel report: geotechnical conditions in Buenos Aires City. Proceedings, V ICIAEG, Buenos Aires.
- Núñez, E. y C. Micucci 1986. Cemented preconsolidated soils as very weak rocks. V ICIAEG, Buenos Aires.
- Núñez, E., Trevisán, S. 1999. Main towers of La Plata City Cathedral. Reinforcement of foundations. XI PCSMGE. Foz Iguazu, p.1545-1554.
- Sfriso, A. 2006. Algunos procedimientos constructivos para la ejecución de túneles urbanos XIII CAMSIG, San Juan, 1-17.
- Sfriso A, Sagüés P, Quaglia G, Quintela M, Ledesma O. 2008. Smallstrain stiffness of the Pampeano Formation. IS-Atlanta, IV Intl Symp Def Char Geomat I:237-244.
- Sfriso, A. 2008. Metro tunnels in Buenos Aires: Design and construction procedures 1998 – 2007. 6th Intl Symp Geot Aspects Underg Constr Soft Ground, Shanghai, 335-341.
- Trevisán, S.J., Mauriño, V. 1963. Condiciones geológicas y geomecánicas del subsuelo de la ciudad de La Plata y sus alrededores. Il PCSMFE, San Pablo.