
Trabajo Practico: Secuenciales Asincrónicos.

 Para el siguiente circuito halle las ecuaciones del mismo, la tabla de transición y la tabla de estados:

2) Dada la siguiente tabla de estados, redúzcala a su expresión mínima (la menor cantidad posible de estados).

Estado actual	Siguiente estado		Salida	
	x = 0	x = 1	x = 0	x = 1
a	d	6	0	0
b	e	a	0	0
c	g	f	0	1
d	a	d	1	0
e	a	d	1	0
f	c	b	0	0
g	a	e	1	0

3) Un circuito secuencial asincrónico se describe por las siguientes ecuaciones de excitación y de salida respectivamente:

$$Y = x1.\overline{x2} + (x1 + \overline{x2}). y$$

 $Z = y$

Se pide dibujar el diagrama lógico del circuito, deducir la tabla de transiciones y el mapa de salida. Obtenga la tabla de flujo de dos estados y describa con palabras el comportamiento del circuito.

- 4) Diseñar un Flip Flop tipo T flanco descendente con un secuencial asincrónico trabajando en Modo Fundamental. O sea, el circuito tiene dos entradas C (clock) y T (Toggle) y una salida Q. Cada vez que C pasa de 1 a 0, la salida sigue la ecuación característica de dicho FF.
- 5) Diseñar un Flip Flop tipo D flanco descendente con un secuencial asincrónico trabajando en Modo Fundamental. O sea, el circuito tiene dos entradas C (clock) y D (Data) y una salida Q. Cada vez que C pasa de 1 a 0, la salida copia el valor de D.
- 6) Diseñe un circuito secuencial asincrónico que posea dos entradas **A** y **B** y una salida **Z**. Cada vez que un pulso de **B** esté incluido totalmente en los pulsos de **A**, debe aparecer un pulso en la salida **Z**. La salida vuelve a **0** coincidentemente con la transición de **A** a **0**.

7) Un circuito tiene dos entradas x₁ y x₂ y una salida z. La salida será 1 cuando las entradas tengan el valor 10 y está sea el cuarto valor de la secuencia 00, 01, 11 y 10. En todos los demás casos z permanece en 0.