

ESTABILIDAD II "A" - 64.02 y ESTABILIDAD II - 84.03

TRABAJO PRACTICO № 10: "ANÁLISISIS EN REGIMEN ANELÁSTICO - ARAn"

EJERCICIOS OBLIGATORIOS:

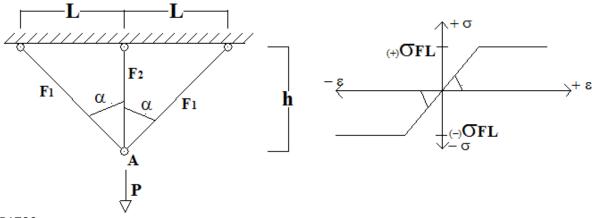
- Ejercicio N°1
- Ejercicio N°4
- Ejercicio N°5
- Ejercicio N°6
- Ejercicio N°7

NOTAS PRELIMINARES:

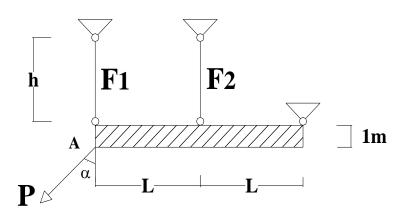
En todos los esquemas y dibujos que se realicen, deberán indicarse los valores característicos;

SOLICITACION AXIL ANELÁSTICA

EJERCICIO Nº 1:


- a. Determinar la carga Pe que provoca la fluencia en la 1era barra del sistema (Pe o Pf)
- **b.** Idem para la carga Pc que provoca el colapso del sistema (Pc o Pu)
- c. Suponiendo que el sistema se carga con P* = (Pe +Pc)/2 y luego se descarga totalmente, determinar los esfuerzos residuales, las tensiones residuales y las deformaciones residuales en las barras.- Indicar todos los valores en un diagrama Ni- δ a (δ a = corrimiento del punto A)
- **d.** Trazar los diagramas P = f (δ a), indicando los valores significativos de carga y de descarga
- e. Idem para los Ni = f (P) en carga y descarga

05.10.01-ARAn	TP Nº 10 – Análisis en Régimen Anelástico- ARAn	0	2018	2°	Todos	Pág.:	1
TP N°	CARPETA – SUB-CARPETA – DENOMINACIÓN	REV.	AÑO	CUATRIM.	CURSOS	de:	8


ESTABILIDAD II "A" - 64.02 y ESTABILIDAD II - 84.03

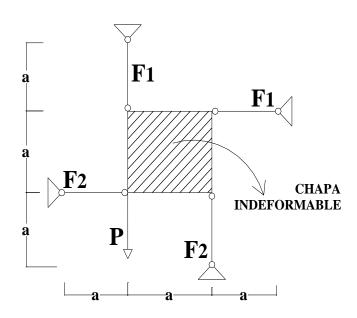
DATOS:

EJERCICIO Nº 2:

- a. Cuál es la carga máxima admisible, frente al colapso, que puede soportar la estructura con una seguridad $\nu p = 1.6$
- **b.** Para dicho valor de carga tomado como dato indicar que seguridad se tiene en las barras ante la fluencia (ν_{σ} en las barras)
- **c.** Trazar los diagramas P = f (δ a), (corrimiento vertical del punto A) hasta alcanzar Pcolapso. Indicar todos los valores notables.

DATOS: Idem Ejercicio 1, Barra horizontal ∞ rígida a flexión y solicitación axil

05.10.01-ARAn	TP № 10 – Análisis en Régimen Anelástico- ARAn	0	2018	2°	Todos	Pág.:	2
TP N°	CARPETA – SUB-CARPETA – DENOMINACIÓN	REV.	AÑO	CUATRIM.	CURSOS	de:	8


ESTABILIDAD II "A" - 64.02 y ESTABILIDAD II - 84.03

EJERCICIO Nº 3: Para el sistema de barras esquematizado en la figura se pide determinar:

- a. Carga máxima elástica Pe
- **b.** Carga máxima admisible frente al colapso Pc que puede soportar la estructura con una seguridad Ip = 1.6
- **c.** Suponiendo que el sistema se carga con P* = 1.20 Pe, y luego se descarga totalmente, determinar los esfuerzos residuales, las tensiones residuales y deformaciones residuales en las barras

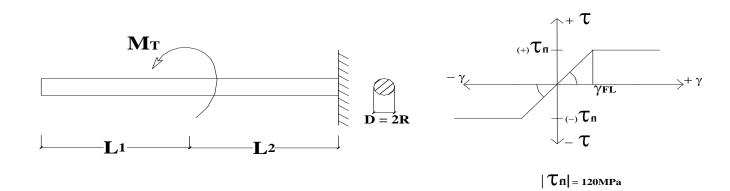
DATOS:

a= 2 m E = 210 GPa F1 = 4 cm2 F2 = 4 cm2
$$\sigma_{f1}$$
 = 240MPa

05.10.01-ARAn	TP № 10 – Análisis en Régimen Anelástico- ARAn	0	2018	2°	Todos	Pág.:	3
TP N°	CARPETA – SUB-CARPETA – DENOMINACIÓN	REV.	AÑO	CUATRIM.	CURSOS	de:	8

ESTABILIDAD II "A" - 64.02 y ESTABILIDAD II - 84.03

TORSIÓN ANELÁSTICA


EJERCICIO Nº 4:

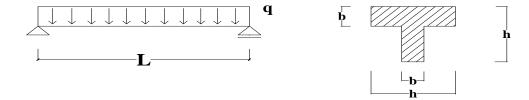
- a. Determinar el Mt que produce una penetración plástica con una profundidad p = R/3
- **b.** Determinar el M_t de colapso
- **c.** Si se descarga totalmente la pieza para el caso a) determinar el giro específico (o curvatura específica de torsión) residual y trazar el diagrama de tensiones tangenciales residuales
- d. Determinar el coeficiente de forma de torsión para la sección dada y trazar el diagrama $\mathbf{M}_{t-}\chi_{t}$, tanto en carga como en descarga

DATOS:

Material Idem Ejercicio 1 D = 10 cm L1 = L2 + 2 m L2 = 2 m
$$\left| \mathbf{TfI} \right|$$
 = 120 MPa μ = 0.30

NOTA: Indicar en todos los casos en la sección de análisis las solicitaciones y sus diagramas de tensiones y de deformaciones.

05.10.01-ARAn	TP № 10 – Análisis en Régimen Anelástico- ARAn	0	2018	2°	Todos	Pág.:	4
TP N°	CARPETA – SUB-CARPETA – DENOMINACIÓN	REV.	AÑO	CUATRIM.	CURSOS	de:	8



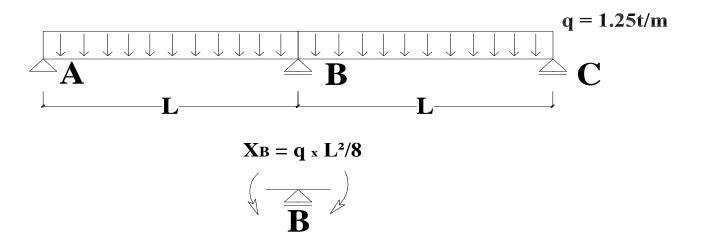
ESTABILIDAD II "A" - 64.02 y ESTABILIDAD II - 84.03

FLEXION SIMPLE ANELÁSTICA

EJERCICIO Nº 5:

- a. Dimensionar la viga de la figura a flexión en régimen elástico, trazando los diagramas de σ - ε para una carga de servicio dada ($\mathbf{q}_{\mathsf{servicio}}$).
- **b.** Calcular la carga \mathbf{q}_{e} ó \mathbf{q}_{fl} y el momento Me (ó \mathbf{M}_{fl} que inicia la plastificación). Diagrama σ - ε
- c. Si se produce una penetración plástica tal que se plastifica el 25% del ala, calcular q* y M* que las producen, y decir que plastificación se alcanzó (p =?). Diagrama σ - ε .
- d. Calcular el momento \mathbf{M}_{p} de plastificación total y la correspondiente \mathbf{q}_{p} . Trazar el diagrama σ ($\mathbf{q}\mathbf{p} = \mathbf{q}\mathbf{u} = \mathbf{q}\mathbf{colapso}$)
- e. Graficar para los casos anteriores M $\chi_{\text{flexión}}$
- **f.** Cuál es la seguridad de la viga ante el colapso $u_{
 m c}$
- g. Dimensionar la viga a flexión en régimen plástico con una seguridad ante el colapso $\nu_{\rm p}$ regl que coincide numéricamente con ν_{σ} regl y determinar la economía que se obtiene frente al ejercicio a).

DATOS: L = 4m, h/b = 10, qservicio= 1.25t/m, ν_{σ} =1.6, $|\sigma_{fl}|$ = 2400 kg/cm2

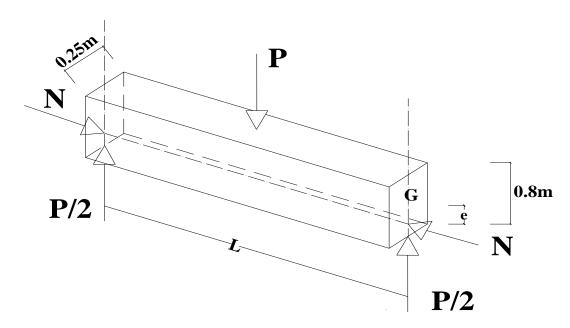

05.10.01-ARAn	TP № 10 – Análisis en Régimen Anelástico- ARAn	0	2018	2°	Todos	Pág.:	5
TP N°	CARPETA – SUB-CARPETA – DENOMINACIÓN	REV.	AÑO	CUATRIM.	CURSOS	de:	8

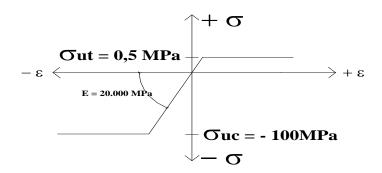
ESTABILIDAD II "A" - 64.02 y ESTABILIDAD II - 84.03

h. Para la sección dimensionada en a) para la viga hiperestática de la figura (de iguales luces y carga), calcular
 q_{colapso} y comparar con la obtenida en d) (Discutir los resultados)

05.10.01-ARAn	TP № 10 – Análisis en Régimen Anelástico- ARAn	0	2018	2°	Todos	Pág.:	6
TP N°	CARPETA – SUB-CARPETA – DENOMINACIÓN	REV.	AÑO	CUATRIM.	CURSOS	de:	8

ESTABILIDAD II "A" - 64.02 y ESTABILIDAD II - 84.03


FLEXION COMPUESTA ANELÁSTICA


EJERCICIO Nº 6:

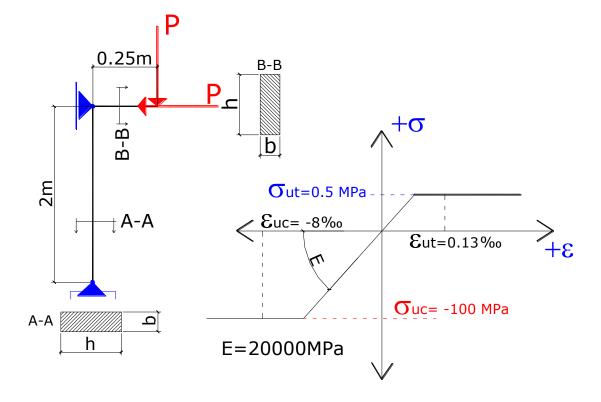
Para el material elasto-plástico ideal dado, previo trazado de diagramas características, determinar si es posible aplicar sobre la barra de la figura las fuerzas exteriores indicadas asegurándose el cumplimiento de la condición

DATOS: Plastificación de la sección = 20%, N = 4 P, e = 0.25 m, L = 8 m,

NOTA: Utilizar las curvas de interacción (N,M) previamente trazadas en los 4 cuadrantes. En caso afirmativo calcular cuánto vale P.

05.10.01-ARAn	TP № 10 – Análisis en Régimen Anelástico- ARAn	0	2018	2°	Todos	Pág.:	7
TP N°	CARPETA – SUB-CARPETA – DENOMINACIÓN	REV.	AÑO	CUATRIM.	CURSOS	de:	8

ESTABILIDAD II "A" - 64.02 y ESTABILIDAD II - 84.03


EJERCICIO Nº 7:

Para la estructura que como esquema se indica a continuación y el material dado (elasto-plástico real, "con limitación de deformación"), se pide :

- a. Trazar los diagramas de funciones características
- b. Determinar el valor de la fuerza exterior Púltima que pueda aplicarse sobre la estructura
- c. Para la sección analizada en el punto anterior, trazar los diagramas σ - ε

DATOS: **b = 0.25 m h = 0.80 m**

NOTA: Utilizar las curvas de interacción (N,M) previamente trazadas en los 4 cuadrantes.

05.10.01-ARAn	TP № 10 – Análisis en Régimen Anelástico- ARAn	0	2018	2°	Todos	Pág.:	8
TP N°	CARPETA – SUB-CARPETA – DENOMINACIÓN	REV.	AÑO	CUATRIM.	CURSOS	de:	8